SOC Design of a Neural Network for Real-Time Semantic Segmentation of 2Kx1K@60fps Video

Youn-Long Lin

Department of Computer Science

National Tsing Hua University

Project Goals

- 1. Real-time Semantic Segmentation of HD Video (1Kx2K@60fps)
- 2. Hardware-friendly neural network architecture
- 3. Proof-of-Concept using GPU
- 4. ASIC

Semantic Segmentation – CityScapes Dataset

How to do it? Autoencoder, Naturally

- Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).
- Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. NTHU-CS YLLIN
- Zhao, H., Qi, X., Shen, X., Shi, J., & Jia, J. (2018). Icnet for real-time semantic segmentation on high-resolution images. In Proceedings of the European Conference on Computer Vision (ECCV) (np. 405-420)

What we want for semantic segmentation?

mean IoU (Intersect over Union)

Accuracy vs frames per second

Network design tradeoffs

- Performance (Accuracy) Accuracy vs Operations Per Image Inference
- Cost
 - Hardware gate count
 - Network size (Parameters)
- Inferencing
 - Time (# Operations?)
 - Energy consumption

Alfredo Canziani, Adam Paszke, Eugenio Culurciello, "An Analysis of Deep Neural Network Models for Practical Applications" 2016

U-Net & DenseNet-Inspired Network Design

Proposed Network

NTHU-CS YLLIN

DRAM Traffic vs Run-Time

Figure 3: Runtime vs. DRAM traffic measured by the simulation of ARM Scale.

Low DRAM Traffic (Run-Time) and High Accuracy

To make an ASIC

USD8000/300W

Ρ	E	CI	FI	CA	TIC	NS	
	_						

S

Tesla V100 Tesla V100 PCle SXM2

GPU Architecture	NVIDI		
NVIDIA Tensor Cores	64		
NVIDIA CUDA* Cores	5,1		
Double-Precision Performance	7 TFLOPS	7.5 TFLOPS	
Single-Precision Performance	14 TFLOPS	15 TFLOPS	
Tensor Performance	112 TFL0PS	120 TFLOPS	
GPU Memory	16 GB		
Memory Bandwidth	900 G		
ECC	Ye	es	
Interconnect Bandwidth*	32 GB/sec	300 GB/sec	
System Interface	PCIe Gen3	NVIDIA NVLink	
Form Factor	PCIe Full Height/Length	SXM2	
Max Power Comsumption	250 W	300 W	
Thermal Solution	Pas		
Compute APIs	CUDA, Dire 0penCL [™] ,	-CS YLLIN	

USD100/10W

> 99% Computes are2D Convolution(Multi-Channel, Multi-Filter)

A Comprehensive Introduction to Different Types of Convolutions in Deep Learning -- Towards intuitive understanding of convolutions through visualizations Kunlun Bai

or (m = 0; m < numOutputLayers; m++) //Loop 1						
<pre>for (n = 0; n < numInputLayers; n++) //Loop 2</pre>						
<pre>for (h = 0; h < outputHeight; h++) //Loop 3</pre>						
<pre>for (w = 0; w < outputWidth; w++) //Loop 4</pre>						
<pre>for (i = 0; i < kernelHeight; i++) //Loop 5</pre>						
<pre>for (j = 0; j < kernelWidth; j++) //Loop 6</pre>						
out[m][h][w] +						
in[n][h * S + i][w * S + j] *						
<pre>kernel[m][n][i][j];</pre>						

2D Convolution with Systolic Array

Output Stationary

Citation: Ananda Samajdar, Yuhao Zhu, Paul Whatmough Matthew Mattina, and Tushar Krishna. Scale-sim: Systolic cnn accelerator. arXiv preprint arXiv:1811.02883, 2018.

Memory bound vs Compute Bound

Per Layer # Paras vs #Ops 600000 5E+09 500000 4E+09 400000 3E+09 300000 2E+09 200000 1F+09 100000 0 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 params ——#Ops

Per Layer Utilization of 9216 MACs

Results

- Network
 - 69-Layer Convolutional Neural Network (Other versions: 84, ...)
 - 3.8M parameters
 - 59.685G Operations per 1Kx2K frame inference
- PyTorch on GPU Implementation
 - 80fps on a TWCC nVidia Tesla V100 32GB GPU (300Watt, USD8,000)
 - 59.658Gops * 80 / 120Tops ~ 4% utilization
- Preliminary ASIC Design
 - 9216 MACs (Mutli-Add) = 18,432 PEs
 - Peak performance 9.216 Tera ops @ 500 MHz
 - 3.846M Clock Cycles to inference a 1Kx2K frame
 - 59.685G / (3.846M * 18432) ~ 85% utilization

Thank you!!